Stability and control of mobile communication systems with time-varying channels

نویسندگان

  • Robert Buche
  • Harold J. Kushner
چکیده

Consider the forward link of a mobile communications system with a single transmitter and rather arbitrary randomly time varying channels connecting the base to the mobiles. Data arrives at the base in some random way (and might have a bursty character) and is queued according to the destination until transmitted. The main issues are the allocation of transmitter power and time to the various queues in a queueand channelstate dependent way to assure stability and good operation. The control decisions are made at the beginning of the (small) scheduling intervals. Stability methods are used to allocate time and power. Many schemes of current interest can be handled: For example, CDMA with control over the bit interval and power per bit, TDMA with control over the time allocated, power per bit, and bit interval, as well as arbitrary combinations. There might be random errors in transmission which require retransmission. The channel-state process might be known or only partially known. The details of the scheme are not directly involved; all essential factors are incorporated into a “rate” and “error” function. The system and channel process are scaled by speed. Under a stability assumption on a model obtained from the “mean drift,” and some other natural conditions, it is shown that the scaled physical system can be controlled to be stable, uniformly in the speed, for fast enough speeds. Owing to the non-Markov nature of the problem, we use the perturbed Liapunov function method, which is very useful for the analysis of non-Markovian systems. Finally, the stability method is used to actually choose the power and time allocations. The allocation will depend on the Liapunov function. But each such function corresponds loosely to an optimization problem for some performance criterion. Since there is a choice of Liapunov functions, various performance criteria can be taken into account in the allocations. The resulting controls are quite reasonable. The power of the method is due to the rather general conditions under which it works and the reasonableness of the controls. Both authors were partially supported by Army Research Office Contract DAAD19-00-10549 and National Science Foundation Grant ECS 9979250.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

A new virtual leader-following consensus protocol to internal and string stability analysis of longitudinal platoon of vehicles with generic network topology under communication and parasitic delays

In this paper, a new virtual leader following consensus protocol is introduced to perform the internal and string stability analysis of longitudinal platoon of vehicles under generic network topology. In all previous studies on multi-agent systems with generic network topology, the control parameters are strictly dependent on eigenvalues of network matrices (adjacency or Laplacian). Since some ...

متن کامل

Identification and Control of MIMO Systems with State Time Delay (Short Communication)

Time-delay identification is one of the most important parameters in designing controllers. In the cases where the number of inputs and outputs in a system are more than one, this identification is of great concern. In this paper, a novel autocorrelation-based scheme for the state variable time-delay identification for multi-input multi-output (MIMO) system has been presented. This method is ba...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Finite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay

In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...

متن کامل

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002